复旦大学的武利民课题组研发了一种基于非对称互锁梯度模量结构的柔性电容式压力传感用于超宽范围压力监测。在该传感器中,非对称互锁的结构化电极为监测范围的拓宽起到了至关重要的作用。团队采用摩方精密nanoArch®S1303D打印设备,实现了非对称互锁穹顶结构模板的高精度打印,并创新性地将非对称互锁的结构化电极和梯度模量的概念结合起来,在保障了传感器其余性能的同时,进一步扩大了监测范围,确保了传感的可靠性。
摩方精密PμSL 技术支持用于成型材料的高精度微型模具的生产,与其他 3D 打印平台相比,PμSL 技术还提供更好的表面光洁度(0.4 – 2.5 rA),甚至可以打印小至10μm且具有高深宽比的3D通道。
本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。
工业3D打印成本主要取决于所购买的设备、所用材料的数量以及所需的总制造时间。还有一些成本可能与类别重叠,我们可以在该过程中减少成本。本文将带您了解工业3D打印成本的三个主要来源:设备、劳动力、材料。
佐治亚理工学院的电子和纳米技术研究所利用摩方精密的微纳3D打印机开发微针,专为微创药物输送而设计,用于视网膜修复领域。
近期江苏大学张忠强教授团队制备出了一种带有横向梯度微通道和环向凹槽的新型纵横织构锥体,提出了功能表面梯度表面张力-毛细吮吸力耦合作用下液滴自运输双模式,实现了多尺度液滴超快速、长距离无损自运输。研究通过摩方精密nanoArch® S140高精度3D打印机制备了纵横织构锥体,实现了多尺度液滴超快速定向长距离自运输,最大自运输速度可达208 mm/s,比具有单一曲率梯度的自然或仿生结构快1-4个数量级。
摩方精密在软体机器人应用已有着丰富的科研经验,在研究生物体和软体机器人结构与特性之间的相关性中,设计制备出具有该特性的结构和材料,通过独有的面投影微立体光刻(PµSL)技术,可完成复杂三维微结构的快速成型制作,摩方精密制备出的软体机器人相关精细零件被应用于内窥镜、手术机器人、仿生结构、智能传感器等众多领域。
精密加工是指利用先进的加工手段,在微观层面上对材料进行高精度、高效率的加工过程。它主要包括切削、磨削、蚀刻等加工方法,以实现对材料微观结构的调控。精密加工技术在半导体、汽车工业、生物医学、光学等领域具有广泛应用。